Mohammed Ibn Musa Al-Khwarizmi

Nació : hacia el 780 en Khwarizm (hoy Khiva, Uzbekistán)

Murió: hacia el 850 en Bagdad (hoy Irak)

 

        Matemático, astrónomo y geógrafo musulmán, Mohammed Ibn Musa abu Djafar Al-Khwarizmi, nació probablemente en la ciudad persa de Khwarizm (actual Khiva, en Uzbekistan), situada al sudeste del mar de Aral, en la vieja ruta de la seda, que había sido conquistada 70 años antes por los árabes. Su nombre significa "Mohamed, hijo de Moisés, padre de Jafar, el de Khwarizm". 

Hacia el 820, Al'Khwarizmi fue llamado a Bagdad por el califa abasida Al Mamun, segundo hijo de Harun ar Rashid,  conocido por todos gracias a las "Mil y una noches". Al Mamun continuó el enriquecimiento de la ciencia árabe y de la Academia de Ciencias creada por su padre, llamada la Casa de la Sabiduría. Se tradujeron al árabe obras científicas y filosóficas griegas e hindúes, y contaba con observatorios astronómicos. En este ambiente científico y multicultural se educó y trabajó Al-Khwarizmi, el cual dedicó sus tratados de álgebra y astronomía al propio califa. Todo este florecimiento traería importantes consecuencias en el desarrollo de la ciencia en Europa, principalmente a través de España.

Sabemos también que realizó viajes por Afganistán, el sur de Rusia y Bizancio (hoy Turquía). Falleció en Bagdad hacia el año  850.  Para muchos, fue el más grande de los matemáticos de su época.

La mayoría de sus diez obras son conocidas en forma indirecta o por traducciones hechas más tarde al latín (muchas de ellas en Toledo) y de algunas sólo se conoce el título. Al-Khwarizmi fue un recopilador del conocimiento de los griegos e hindúes, principalmente de matemáticas, pero también de astronomía (incluyendo el calendario judío), astrología, geografía e historia. Su trabajo más conocido y usado fueron sus Tablas Astronómicas, basadas en conocimientos de los hindúes. Incluyen algoritmos para calcular fechas y las primeras tablas conocidas de las funciones trigonométricas seno y cotangente.

De su aritmética, posiblemente denominada originalmente "Kitab al-Jam'a wal-Tafreeq bil Hisab al-Hindi", sólo conservamos la versión latina, Algoritmi de Numero Indorum, del siglo XII. En esta obra describe con detalle el sistema hindú de numeración posicional en base 10 y la manera de para hacer cálculos con él. Se sabe que había un método para hallar raíces cuadradas en la versión árabe, pero no aparece en la versión latina. Fue esencial para la introducción de este sistema de numeración en el mundo árabe y posteriormente en Europa. El que nos haya llegado a través de los árabes hace que le llamemos habitualmente sistema de numeración árabe, cuando deberíamos llamarlo indo-arábigo. Posiblemente fuese el primero en utilizar el cero como una cifra.

 

Su tratado de álgebra es una introducción compacta al cálculo, usando reglas para completar y reducir ecuaciones. Además de sistematizar la resolución de ecuaciones cuadráticas, también trata geometría, cálculos comerciales y de herencias. Quizás éste es el libro árabe más antiguo conocido y parte de su título "Kitab al-jabr wa'l-muqabala" da origen a la palabra álgebra. Los términos al-jabr y al-muqabala se utilizan para denominar lo que nosotros entendemos por transposición de términos y posterior simplificación de términos semejantes con coeficientes negativos y positivos. Una posible traducción del título sería "El libro de restaurar e igualar" o "El arte de resolver ecuaciones". La palabra algebrista se utiliza también en "El Quijote" con un significado ya en desuso, pero que hace referencia a ese significado de restauración o recomposición. En el diccionario de la Real Academia Española de la Lengua podemos leer: "Algebrista, 2. (desusado) Cirujano dedicado especialmente a la curación de dislocaciones de huesos."


Texto de una edición árabe de su álgebra (El Cairo, 1968) donde se explica como resolver la ecuación x^2 + 10x = 39

 

De su tratado sobre Astronomía, Sinshind zij, también se han perdido las dos versiones que escribió en árabe. Como ocurre con la aritmética, conservamos dos versiones latinas del siglo X. Incluye estudios de calendarios, posiciones reales del sol, la luna y los planetas, tablas de senos y tangentes, astronomía esférica, tablas astrológicas, cálculos de paralaje y eclipses, y visibilidad de la luna.

En Geografía, con una obra denominada Kitab Surat-al-Ard, revisó y corrigió a Ptolomeo en lo referente a África y al Oriente. Lista latitudes y longitudes de ciudades, montañas, mares, islas, regiones geográficas y ríos, como base para un mapa del mundo entonces conocido. En este mapa dice que trabajaron a sus órdenes setenta geógrafos. 

El trabajo de Al'Khwarizmi permitió preservar y difundir el conocimiento de los griegos (con la notable excepción del trabajo de Diofanto) e hindúes, pilares de nuestra civilización. Rescató de los griegos la rigurosidad y de los hindúes la simplicidad (en vez de una larga demostración, usar un diagrama junto a la palabra Mira). Sus libros son intuitivos y prácticos y su principal contribución fue simplificar las matemáticas a un nivel entendible por los no expertos. En particular, muestra las ventajas de usar el sistema posicional hindú, un atrevimiento para su época, dado lo tradicional de la cultura árabe. La exposición clara de cómo calcular de una manera sistemática por medio de algoritmos diseñados para ser usados con algún tipo de dispositivo mecánico similar a un ábaco, más que con lápiz y papel, muestra la intuición y el poder de abstracción de Al'Khwarizmi. Hasta se preocupaba de reducir el número de operaciones necesarias en cada cálculo. Por esta razón, aunque no haya sido él el inventor del primer algoritmo, merece que este concepto esté asociado a su nombre.

 

Bibliografía:

Boyer, Carl B.: Historia de la matemática. Alianza Universidad, 1992
http://www.ctv.es/USERS/capblanch/es/ALK/Alkwa.htm
http://www-etsi2.ugr.es/alumnos/mlii/AlKhwarizmi.htm
http://www.arrakis.es/~mcj/alkhwa.htm
http://trucsmaths.free.fr/alkhwarizmi.htm


Página principal


Matemáticas